
12

6.6.2.2 Basic Operating System Entry Cost

System OS entry
(lat_syscall)

Linux/Alpha 2
Linux/i586 2
Linux/i686 3
Unixware/i686 4
Sun Ultra 1 5
FreeBSD/i586 6
Solaris/i686 7
DEC Alpha@300 9
Sun SC1000 9
HP K210 10
SGI Indigo 2 11
DEC Alpha@150 11
IBM PowerPC 12
IBM Power 2 16
SGI Challenge 24

DAISY systems
FreeBSD/i586 (p5-90) 8

HEAT systems
DEC Alpha 13
HP 9000/735 12
IBM RS6000 65
SUN SS10 36
SGI IRIX 39

Table 12. lat_syscall results (microseconds).

Entering into the operating system is required for many system facilities. The cost of entering

and exiting the operating system without pause is useful when calculating the cost of a system facility

Through lat_syscall, lmbench measures this basic operating system entry cost (Table 12). This is

accomplished by repeatedly writing one byte to /dev/null, a pseudo device driver that does nothing but

discard the data.

6.6.2.3 Process Creation Times

The lmbench process benchmark is used to measure the basic process primitives: creating a new

process (fork & exit), running a different program (fork, exec, & exit), and context switching (fork, exec sh

-c, & exit). The benchmarks measure the time it takes to create a basic thread of control.

fork & exit : The time it takes to split a process into nearly two identical copies and have one exit.
fork, exec, & exit : The time it takes to create a new process and have that new process run a new program.
fork, exec sh-c, & exit : The time it takes to create a new process and have that new process run a new program

by asking the system shell to find that program and run it.

Process creation benchmarks are of particular interest to distributed systems since many remote

operations include the creation of a remote process to help the remote operation to complete. Table 13

show the results of the lat_proc benchmark.

13

process creation
System fork & exit fork, exec,

& exit
fork, exec
sh-c, & exit

Linux/Alpha 0.7 3 12
linux/i686 0.4 5 14
Linux/i586 0.9 5 16
Unixware/i686 0.9 5 10
DEC Alpha@300 2 6 16
IBM PowerPC 2.9 8 50
SGI Indigo 2 3.1 8 19
IBM Power 2 1.2 8 16
FreeBSD/i586 2 11 19
HP K210 3.1 11 20
DEC Alpha@150 4.6 13 39
SGI Challenge 4 14 24
Sun Ultra 1 3.7 20 37
Solaris/i686 4.5 22 46
SUN SC1000 14 69 281

DAISY systems
FreeBSD/i586 (p5-90) 4.7 19.9 35.1

HEAT systems
DEC Alpha 2.7 9.9 23.5
HP 9000/735 3.4 10 19.9
IBM RS6000 3.9 12.2 28.9
SUN SS10 6.3 23.9 37.7
SGI IRIX 4.5 13.8 31.2

Table 13 show the results of the lat_proc benchmark (microseconds).
6.6.2.4 Context Switching

In a multiprocessing environment, timesharing (sharing the CPU and memory with several

processes at the same time) must take place. Therefore, at any instance it must be possible to switch from

one process to the next. The context switching benchmark measures the time it takes to save the state of

one process and restore the state of another.

The context switch benchmark (lat_ctx) is implemented as a ring of two to twenty processes that

are connected with UNIX pipes. A token is passed from process to process, forcing context switches. The

benchmark measures the time it takes to pass the token two thousand times from process to process (Table

14). Each hand off of the token has two costs: (a) the context switch, and (b) the cost of passing the token.

In order to get the context switching time, the benchmark first measures the cost of passing the token

through a ring of pipes in a single process. This time (overhead time) is defined as the cost of passing the

token and is not included in the reported context switch.

Results from a DAISy system are shown in Figure 17. As the size and number of processes

increase, processes start falling out of cache, resulting in higher context switch times. Note the increase in

overhead as the size increases.

14

lmbench 1.0 Suite (lat_ctx)
p5 - 9 0

0

50

100

150

200

250

300

350

2 4 8 16 20

of processes

co
st

 o
f c

on
te

xt
 s

w
itc

h
(u

se
c)

0

50

100

150

200

250

300

350
size =0,
ovr=42
size = 4,
ovr=91
size = 16,
ovr=384
size = 32,
ovr=751
size = 64,
ovr=1501

Figure 17. lat_ctx results for a DAISy system.
context switch
2 processes 8 processes

System 0KB 32KB 0KB 32KB

Linux/i686 6 18 7 101
Linux/i586 10 163 13 215
Linux/Alpha 11 70 13 78
IBM Power2 13 16 18 43
Sun Ultra1 14 31 20 102
DEC Alpha@300 14 17 22 41
IBM PowerPC 16 87 26 144
HP K210 17 17 18 99
Unixware/i686 17 17 18 72
FreeBSD/i586 27 34 33 102
Solaris/i686 36 54 43 118
SGI Indigo2 40 47 38 104
DEC Alpha@150 53 68 59 134
SGI Challenge 63 80 69 93
SUN SC1000 107 142 104 197

DAISY systems
FreeBSD/i586 (p5-90) 37 19 47 124

HEAT systems
DEC Alpha 45 35 55 23
HP 9000/735 20 37 24 185
IBM RS6000 106 109
SUN SS10 34 60 79 106
SGI IRIX 90 98 94 185

Table 14. lat_ctx results (microseconds).
6.6.2.5 Interprocess Communication

The cost of communicating between processes or IPC overhead consists of the time required to

execute a system call and the time to move the data between processes.

The IPC latency benchmarks (lat_connect, lat_rpc/udp, lat_rpc/tcp, lat_tcp, and lat_udp) are

implemented by passing a small message (a byte or so) back and forth. The reported results are the

microseconds it takes to do one round trip. Results are shown in Table 15.

15

pipe TCP RPC/TCP UDP RPC/UDP connect
System Network local

host
local
host

remote
host

local
host

remote
host

local
host

remote
host

local
host

remote
host

local
host

remote
host

Linux/i686 26 216 na 346 na 93 na 180 na 263 na
Linux/i586 33 467 na 713 na 187 na 366 na 606 na
Linux Alpha 34 429 na 602 na 180 na 317 na na na
Sun Ultra1 100baseT 62 162 280 346 na 197 308 267 na 852 na
IBM PowerPC 65 299 na 698 na 206 na 536 na na na
Unixware/i686 70 na na na na na na na na na na
DEC Alpha@300 71 267 na 371 na 259 na 358 na na na
HP K210 78 146 na 606 na 152 na 543 na 238 na
IBM Power2 91 332 na 649 na 254 na 531 na 339 na
Solaris/i686 101 305 na 528 na 348 na 454 na 1230 na
FreeBSD/i586 100baseT 104 256 365 440 na 212 304 375 na 418 na
SGI Indigo2 10baseT 131 278 543 641 na 313 602 671 na 667 na
DEC Alpha@150 179 467 na 788 na 489 na 834 na na na
SGI Challenge 251 546 na 900 na 678 na 893 na 716 na
Sun SC1000 278 855 na 1386 na 739 na 1101 na 3047 na

DAISY systems
FreeBSD/i586 (p5-90) 10baseT 153 407 731 740 na 340 615 615 887 609 544
FreeBSD/i586 (p5-90) 100baseT na 442 572 na na 378 470 664 723 650 154

HEAT systems
DEC Alpha fddi 146 386 567 647 na 412 1089 707 1181 3904 976
HP 9000/735 fddi 159 222 419 799 na 225 403 774 572 360 535
IBM RS6000 fddi 408 1178 2033 2185 na 936 1893 1841 2576 1076 2326
SUN SS10 fddi 175 495 1243 1036 na 515 1293 956 1662 672 1405
SGI IRIX fddi 314 643 28716 1216 na 653 28702 1302 10972 1228 25212

Table 15. IPC latency results (microseconds).
Pipe Latency: Pipe latency is measured by creating a pair of pipes, forking a child process, and passing

a word back and forth. Table 15 shows the results.

TCP and RPC/TCP: TCP and RPC/TCP connections are typically used in low bandwidth latency

sensitive applications. TCP latency is measured by having a server process which waits for connections

and a client process that connects to the server. The benchmark passes a token back and forth between the

two processes through a TCP socket and measures the round trip time. Note that the RPC layer frequently

adds hundreds of microseconds of additional latency.

UDP and RPC/UDP: UDP sockets are an alternative to TCP sockets. UDP and RPC/UDP messages

are commonly used in client server applications. NFS is probably the most widely used RPC/UDP

application in the world.

UDP latency is measured by having a server process which waits for connections and a client

process that connects to the server. The benchmark passes a token back and forth between two processes

through a UDP socket and measures the round trip time. Again, note that the RPC layer can add hundreds

of microseconds of additional latency.

